

2 Distributions

Exercise 2.1. Let $\varphi \in \mathcal{S}(\mathbb{R})$. There are many ways to see that, but using that $(\log|x|)' = \text{p.v.} \frac{1}{x}$, we deduce that

$$\left\langle \text{p.v.} \frac{1}{x}, \varphi \right\rangle = - \int_{\mathbb{R}} \log|x| \varphi'(x) dx.$$

We have

$$\left| \int_{\mathbb{R} \setminus [-1,1]} \log|x| \varphi'(x) dx \right| \leq \int_{\mathbb{R} \setminus [-1,1]} |x| |\varphi'(x)| dx \leq \sup_{x \in \mathbb{R}} |x^3 \varphi'(x)| \int_{\mathbb{R} \setminus [-1,1]} \frac{dx}{|x|^3} = \|\varphi\|_{1,3}.$$

On the other hand, we have

$$\left| \int_{[-1,1]} \log|x| \varphi'(x) dx \right| \leq \|\log|x|\|_{L^1([-1,1])} \|\varphi'\|_{L^\infty(\mathbb{R})} = 2 \|\varphi\|_{1,0}.$$

Finally, we get

$$\left| \left\langle \text{p.v.} \frac{1}{x}, \varphi \right\rangle \right| \leq (2 \|\varphi\|_{1,0} + \|\varphi\|_{1,3}),$$

which shows (almost by definition) that $\text{p.v.} \frac{1}{x} \in \mathcal{S}'(\mathbb{R})$.

Exercise 2.2. Indeed, we have

$$\sup_{x \in \mathbb{R}} |x^\beta \partial_x^\alpha (\tau_a \varphi)(x)| = \sup_{x \in \mathbb{R}} |x^\beta \varphi^{(\alpha)}(x+a)|$$

Since $\varphi \in \mathcal{D}(\mathbb{R})$, if $\text{supp}(\varphi) \subset [-R, R]$, we deduce that

$$\begin{aligned} \sup_{x \in \mathbb{R}} |x^\beta \varphi^{(\alpha)}(x+a)| &= \sup_{|x+a| \leq R} |x^\beta \varphi^{(\alpha)}(x+a)| \\ &\leq \sup_{|x| \leq R+|a|} |x^\beta \varphi^{(\alpha)}(x+a)| \leq (R+|a|)^\beta \|\varphi^{(\alpha)}\|_{L^\infty(\mathbb{R})} \leq C(1+|a|)^\beta. \end{aligned}$$

By contradiction, if $e^x \in \mathcal{S}'(\mathbb{R})$, there exists $n \in \mathbb{N}$ and $C < \infty$ such that

$$|\langle e^x, \varphi \rangle| \leq C \sup_{|\alpha|, |\beta| \leq n} \|\varphi\|_{\alpha, \beta}.$$

Then, we get

$$|\langle \tau_{-a} e^x, \varphi \rangle| \leq C_\varphi (1+|a|)^n,$$

whilst the identity $\tau_{-a} e^x = e^{x-a} = e^{-a} e^x$ shows that

$$|\langle e^x, \varphi \rangle| = e^a |\langle \tau_{-a} e^x, \varphi \rangle| \leq C_\varphi e^a (1+|a|)^n.$$

By letting $a \rightarrow -\infty$, we deduce that $\langle e^x, \varphi \rangle = 0$. Therefore, the only continuous extension of e^x to $\mathcal{S}'(\mathbb{R})$ is the 0 distribution, which shows that $e^x \notin \mathcal{S}'(\mathbb{R})$.

Exercise 2.3. For all $\varphi \in \mathcal{S}(\mathbb{R})$, we have

$$T(\varphi) = \sum_{n \in \mathbb{Z}} a_n \varphi(n).$$

If $\{a_n\}_{n \in \mathbb{N}}$ has polynomial growth, we directly estimate

$$\begin{aligned} |T(\varphi)| &\leq C \sum_{n \in \mathbb{N}} (1 + |n|)^N \varphi(n) \leq C \|(1 + |x|)^{N+2} \varphi\|_{L^\infty(\mathbb{R})} \sum_{n \in \mathbb{Z}} \frac{1}{1 + n^2} \\ &= C' \|(1 + |x|)^{N+2} \varphi\|_{L^\infty(\mathbb{R})} \leq C'' \left(\|\varphi\|_{0,0} + \|\varphi\|_{N,0} \right). \end{aligned}$$

On the other hand, if $\{a_n\}_{n \in \mathbb{N}}$ does not have polynomial growth. By contradiction, assume that

$$|T(\varphi)| \leq C \sup_{|\alpha|, |\beta| \leq N} \|\varphi\|_{\alpha, \beta}.$$

Then, for all $m \in \mathbb{Z}$, we have

$$\left| \sum_{n \in \mathbb{Z}} a_{n+m} \varphi(n) \right| = |\langle \tau_m T, \varphi \rangle| = |\langle T, \tau_{-m} \varphi \rangle| \leq C_\varphi (1 + |m|)^N.$$

Choosing $\varphi \in \mathcal{D}(\mathbb{R})$ such that $\varphi(0) = 1$ and $\text{supp}(\varphi) \subset (-1, 1)$, we deduce that

$$|a_m| = |\tau_m T(\varphi)| \leq C_\varphi (1 + |m|)^N,$$

which contradicts the assumption that $\{a_n\}_{n \in \mathbb{N}}$ does not have polynomial growth at infinity.

Exercise 2.4. Using the structure theorem $T = \sum_{|\alpha| \leq m} D^\alpha \mu_\alpha$, where each μ_α has compact support, we need only check the property for a Radon measure $T = \mu$. *A priori*, we only have $T * \varphi \in \mathcal{D}'(\mathbb{R}^d)$. Furthermore, for all $\psi \in \mathcal{D}(\mathbb{R})$, we have

$$\begin{aligned} \langle T * \varphi, \psi \rangle &= \left\langle T_x, \int_{\mathbb{R}^d} \varphi(y) \psi(x + y) dy \right\rangle = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \varphi(y) \psi(x + y) dy \right) d\mu(x) \\ &= \int_{\mathbb{R}^d} \psi(y) \left(\int_{\mathbb{R}^d} \varphi(y - x) d\mu(x) \right) dy, \end{aligned}$$

and the function

$$y \mapsto \int_{\mathbb{R}^d} \varphi(y - x) d\mu(x)$$

is well-defined since μ has compact support, and standard derivation under the integral estimates show that for all $\alpha \in \mathbb{N}^d$, we have

$$D^\alpha (T * \varphi)(x) = T * D^\alpha \varphi(x) = \int_{\mathbb{R}^d} D^\alpha \varphi(x - y) d\mu(y).$$

Therefore, we have $T * \varphi \in C^\infty(\mathbb{R}^d)$. Furthermore, if $\text{supp}(\mu) \subset B(0, R)$, we deduce that

$$x^\beta D^\alpha(T * \varphi)(x) = \int_{B(0, R)} x^\beta D^\alpha \varphi(x - y) d\mu(y).$$

Now, notice that for all $y \in B(0, R)$, and for all $1 \leq j \leq d$, we have

$$|x_j|^{\beta_j} \leq 2^{\beta_j-1} (|x_j - y_j|^{\beta_j} + |y_j|^{\beta_j}) \leq 2^{|\beta|-1} (|x_j - y_j|^{\beta_j} + R^{|\beta|}).$$

Therefore, we have

$$\begin{aligned} |x^\beta D^\alpha(T * \varphi)(x)| &\leq 2^{|\beta|-1} \int_{B(0, R)} \prod_{j=1}^d (|x_j - y_j|^{\beta_j} + R^{|\beta|}) |D^\alpha \varphi(x - y)| d\mu(y) \\ &\leq 2^{|\beta|-1} (1 + R^{d|\beta|}) \sum_{\beta' \leq \beta} \int_{B(0, R)} |(x - y)^{\beta'} D^\alpha \varphi(x - y)| d\mu(y) \\ &\leq 2^{|\beta|-1} (1 + R^{d|\beta|}) \mu(B(0, R)) \sum_{\beta' \leq \beta} \|\varphi\|_{\alpha, \beta'}. \end{aligned}$$

We obtain the estimate

$$\|T * \varphi\|_{\alpha, \beta} \leq 2^{|\beta|-1} (1 + R^{d|\beta|}) \mu(B(0, R)) \sum_{\beta' \leq \beta} \|\varphi\|_{\alpha, \beta'}.$$

The last assertion follows immediately from this estimate. Let $C < \infty$ and $N \in \mathbb{N}$ such that for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$,

$$|S(\varphi)| \leq C \sup_{|\alpha|, |\beta| \leq N} \|\varphi\|_{\alpha, \beta}.$$

Then, for all $x \in \mathbb{R}^d$, the function

$$F(x) = \langle S_y, \varphi(x + y) \rangle$$

satisfies

$$|F(x)| \leq C \sup_{|\alpha|, |\beta| \leq N} \|y^\beta D_y^\alpha \varphi(x + y)\|_{L^\infty(\mathbb{R}^d)}.$$

We easily deduce from this identity that $F \in C^\infty(\mathbb{R}^d)$, and that

$$\|F\|_{L^\infty(B(0, R))} \leq C' \sup_{|\alpha|, |\beta| \leq N} \|\varphi\|_{\alpha, \beta}$$

Finally, we deduce that

$$|\langle T * S, \varphi \rangle| = |T(F)| \leq C' \mu(B(0, R)) \sup_{|\alpha|, |\beta| \leq N} \|\varphi\|_{\alpha, \beta},$$

where C' only depends on $R > 0$.

Exercise 2.5. See the lecture notes for a general proof of this identity.